分库分表带来的问题

分库分表带来的问题

1.事务一致性问题

分布式事务

当更新内容同时分布在不同库中,不可避免会带来跨库事务问题。跨分片事务也是分布式事务,没有简单的方案,一般可使用"XA协议"和"两阶段提交"处理。

分布式事务能最大限度保证了数据库操作的原子性。但在提交事务时需要协调多个节点,推后了提交事务的时间点,延长了事务的执行时间。导致事务在访问共享资源时发生冲突或死锁的概率增高。随着数据库节点的增多,这种趋势会越来越严重,从而成为系统在数据库层面上水平扩展的枷锁。

最终一致性

对于那些性能要求很高,但对一致性要求不高的系统,往往不苛求系统的实时一致性,只要在允许的时间段内达到最终一致性即可,可采用事务补偿的方式。与事务在执行中发生错误后立即回滚的方式不同,事务补偿是一种事后检查补救的措施,一些常见的实现方法有:对数据进行对账检查,基于日志进行对比,定期同标准数据来源进行同步等等。事务补偿还要结合业务系统来考虑。

2.跨节点关联查询 join 问题

切分之前,系统中很多列表和详情页所需的数据可以通过sql join来完成。而切分之后,数据可能分布在不同的节点上,此时join带来的问题就比较麻烦了,考虑到性能,尽量避免使用join查询。

解决方法:

1)全局表

全局表,也可看做是"数据字典表",就是系统中所有模块都可能依赖的一些表,为了避免跨库join查询,可以将这类表在每个数据库中都保存一份。这些数据通常很少会进行修改,所以也不担心一致性的问题。

2)字段冗余

一种典型的反范式设计,利用空间换时间,为了性能而避免join查询。例如:订单表保存userId时候,也将userName冗余保存一份,这样查询订单详情时就不需要再去查询"买家user表"了。

但这种方法适用场景也有限,比较适用于依赖字段比较少的情况。而冗余字段的数据一致性也较难保证,就像上面订单表的例子,买家修改了userName后,是否需要在历史订单中同步更新呢?这也要结合实际业务场景进行考虑。

3)在系统层面,分两次查询,第一次查询的结果集中找出关联数据id,然后根据id发起第二次请求得到关联数据。最后将获得到的数据进行字段拼装。

4)ER分片

关系型数据库中,如果可以先确定表之间的关联关系,并将那些存在关联关系的表记录存放在同一个分片上,那么就能较好的避免跨分片join问题。在1:1或1:n的情况下,通常按照主表的ID主键切分。

这样一来,Data Node1上面的order订单表与orderdetail订单详情表就可以通过orderId进行局部的关联查询了,Data Node2上也一样

3.跨节点分页、排序、函数问题

跨节点多库进行查询时,会出现limit分页、order by排序等问题。分页需要按照指定字段进行排序,当排序字段就是分片字段时,通过分片规则就比较容易定位到指定的分片;当排序字段非分片字段时,就变得比较复杂了。需要先在不同的分片节点中将数据进行排序并返回,然后将不同分片返回的结果集进行汇总和再次排序,最终返回给用户。

以上只是取第一页的数据,对性能影响还不是很大。但是如果取得页数很大,情况则变得复杂很多,因为各分片节点中的数据可能是随机的,为了排序的准确性,需要将所有节点的前N页数据都排序好做合并,最后再进行整体的排序,这样的操作时很耗费CPU和内存资源的,所以页数越大,系统的性能也会越差。

在使用Max、Min、Sum、Count之类的函数进行计算的时候,也需要先在每个分片上执行相应的函数,然后将各个分片的结果集进行汇总和再次计算,最终将结果返回。

4.全局主键避重问题

5.数据迁移、扩容问题

当业务高速发展,面临性能和存储的瓶颈时,才会考虑分片设计,此时就不可避免的需要考虑历史数据迁移的问题。一般做法是先读出历史数据,然后按指定的分片规则再将数据写入到各个分片节点中。此外还需要根据当前的数据量和QPS,以及业务发展的速度,进行容量规划,推算出大概需要多少分片(一般建议单个分片上的单表数据量不超过1000W)

如果采用数值范围分片,只需要添加节点就可以进行扩容了,不需要对分片数据迁移。如果采用的是数值取模分片,则考虑后期的扩容问题就相对比较麻烦。

何时考虑数据切分

1.能不切分尽量不要切分

并不是所有表都需要进行切分,主要还是看数据的增长速度。切分后会在某种程度上提升业务的复杂度,数据库除了承载数据的存储和查询外,协助业务更好的实现需求也是其重要工作之一。

不到万不得已不用轻易使用分库分表这个大招,避免"过度设计"和"过早优化"。分库分表之前,不要为分而分,先尽力去做力所能及的事情,例如:升级硬件、升级网络、读写分离、索引优化等等。当数据量达到单表的瓶颈时候,再考虑分库分表。

2.数据量过大,正常运维影响业务访问

这里说的运维,指:

1)对数据库备份,如果单表太大,备份时需要大量的磁盘IO和网络IO。例如1T的数据,网络传输占50MB时候,需要20000秒才能传输完毕,整个过程的风险都是比较高的

2)对一个很大的表进行DDL(Data Definition Languages,数据库定义语句)修改时,MySQL会锁住全表,这个时间会很长,这段时间业务不能访问此表,影响很大。如果使用pt-online-schema-change,使用过程中会创建触发器和影子表,也需要很长的时间。在此操作过程中,都算为风险时间。将数据表拆分,总量减少,有助于降低这个风险。

3)大表会经常访问与更新,就更有可能出现锁等待。将数据切分,用空间换时间,变相降低访问压力。

3.随着业务发展,需要对某些字段垂直拆分

假如项目一开始设计的用户表如下:

1
2
3
4
5
id                   bigint             #用户的ID
name varchar #用户的名字
last_login_time datetime #最近登录时间
personal_info text #私人信息
..... #其他信息字段

在项目初始阶段,这种设计是满足简单的业务需求的,也方便快速迭代开发。而当业务快速发展时,用户量从10w激增到10亿,用户非常的活跃,每次登录会更新 last_login_name 字段,使得 user 表被不断update,压力很大。而其他字段:id, name, personal_info 是不变的或很少更新的,此时在业务角度,就要将 last_login_time 拆分出去,新建一个 user_time 表。

personal_info 属性是更新和查询频率较低的,并且text字段占据了太多的空间。这时候,就要对此垂直拆分出 user_ext 表了。

4.数据量快速增长

随着业务的快速发展,单表中的数据量会持续增长,当性能接近瓶颈时,就需要考虑水平切分,做分库分表了。此时一定要选择合适的切分规则,提前预估好数据容量

5.安全性和可用性

鸡蛋不要放在一个篮子里。在业务层面上垂直切分,将不相关的业务的数据库分隔,因为每个业务的数据量、访问量都不同,不能因为一个业务把数据库搞挂而牵连到其他业务。利用水平切分,当一个数据库出现问题时,不会影响到100%的用户,每个库只承担业务的一部分数据,这样整体的可用性就能提高。